The teaching effect: Methods of measurement and limits MOROCCO case

Main Article Content



The question of the effectiveness of education and training systems has always attracted the attention of researchers in the education sciences, including education economists.

Very often compared to a business, the educational establishment makes use of “input” resources of different types to “produce” “output” graduates after a certain number of years of training.

The question that arises is to what extent do these different inputs have an effect on output? and which of these inputs is (are) the most efficient in the “production” process? or in improving learners' academic results.

From a theoretical point of view, student performance varies from one teacher to another or from one group of teachers to another. Numerous studies have shown that these differences in performance are explained by the difference in the characteristics of the teachers such as the levels of the teacher's qualification, the teaching method used, length of service, etc.

One of the methods of calculating the “teaching effect” is based on so-called multilevel statistical analysis, which has the advantage of taking into account, in the same model, the first level variables (those related to students) and those of the second level (relating to teachers).

This paper has a double objective:

- Explain the principle of the teaching effect measurement method;
- Present the results of some studies carried out by “pioneer” researchers in the field as well as the results of the PNEA survey conducted in 2008 by the CSE.

Article Details

How to Cite
CHEDATI, B. (2017). The teaching effect: Methods of measurement and limits: MOROCCO case. The Journal of Quality in Education, 7(10), 15.


- BLAU, P.M. (1960) : "structural effect", Amercian sociological review, 22 pp : 178-193.

- BOUDON, R. (1963) : " Propriétés individuelles et Propriétés collectives : un problème d'analyse écologique", Revue Française de sociologie, 4, pp : 275-299.

- BRESSOUX, P. (1994). « Les recherches sur les effets-écoles et les effets-maîtres » in Revue Française de Pédagogie, n°108, pp. 91-137.

- BRYK, A.S.; RAUDENBUSH, S.W. (1992), Hierarchical Linear Models :

Application and data analysis methods, Sage Publications, Inc.

- CSE (2009), PNEA 2008, Rapport analytique.

- CHEDATI, B (1997), L'analyse multiniveaux comme solution aux limites des régressions classiques appliquées aux données hiérarchiques. In "Les méthodes qualitatives en sciences sociale", Publications de la Faculté des Lettres et des sciences humaines, Rabat.

- CHEDATI, B ; BOUGROUM, M ; R. Ait Ben ASSILA (à paraitre), Les déterminants de la réussite scolaire au primaire au Maroc : Essai d’analyse multi niveaux des données PIRLS 2011

- CHERKAOUI, M (1997), Les paradoxes de la réussite scolaire, PUF

- DE EEUW, J. (1992), Series editor's introduction to hierarchical linear models, in : Bryk, A.S ; Raudenbush, S.W. (1992). Hierarchical linear models : Application and data analysis methods, Sage Publications, Inc, xiii-xvi .

- DUNCAN, C,; JONES, K.; MOON,G. (1995), blood pressure, age gender. In :

Woodhouse G.(ed). "A guide to MLn new users". Multilevel models project.

Institute of education. University of London, 59-85.

- DURKHEIM, E (1993); Le suicide, PUF, Paris (1ère édition 1897).

- ELSTON, R.C., GRIZZLE, J.E. (1962), "Estimation of time response curves and their confidence bands" Biometrics, 18, 148-159.

- GOLDSTEIN, H. (1986), “multilevel mixed linear model analysis using interactive generalized least square”.. Biometrika, 73, 43-56.

- GOLDSTEIN, H. (1987), Multileveled models in educational and social research, London : Griffin.

- GOLDSTEIN, H. (1995), Multilevel statistical models. London, Edward Arnold.

- GOLDSTEIN, H. ; McDonald, R. (1988), “A general model for the analysis of multilevel data.”, psychometrika, 53, 455-467.

- HOX, J.J. (1994), Applied multilevel analysis. Amsterdam : TT- Publikaties.

- HOX, J.J.; KREFT, I.G.G. (1994), “Multilevel analysis methods” , Sociological Methods and research, 22, 283-299.

- MERTON, R. K. (1968), Social theory and social structure. New York, free press.

- McDONALD, R.P. (1994), “The bilevel reticular action model for path analysis with latent variables”. Sociological Methods and Research, 22, 399-413.

- MOURJI,F ;ABBAIA, A. « Les déterminants du rendement scolaire en mathématiques chez les élèves de l’enseignement collégial au Maroc : une analyse multiniveaux », Revue d'économie du développement, 2013/1 - Vol. 27

- MUTHEN, B.O. (1989), “Latent variable modelling in heterogeneous population”. Psychometrika, 54, 557-585.

- MUTHEN, B.O.(1994), “Multilevel covariance structure analysis”, sociological methods and research, 22, (3), 364-375.

- PATTERSON, L. (1991), “Multilevel logistic regression. In : Prosser, R.; Rasbash, J., Goldstein, H. Data analysis with ML3. Institute of education. University of London, 5-18.

- PATTERSON, L. (1995), Entry to University by school leavers. In: Woodhouse G. (ed).

- PLEWIS, I. (1991), Repeated measures models. In : Prosser, R.; Rasbash, J., Goldstein, H. "Data analysis with ML3". institute of education. University of London, 44-58.

- PROSSER, R.; RASBASH, J.; GOLDSTEIN, H. (1991), ML3 software for three-level analysis users’ guide for V. 2 Institute of education, university of London.

- SNIJDERS, T.A.B.; BOSKER, R.J. (1994), “Modeled variance in two-level models.” Sociological methods and research. 22, 342-363.